摘要
针对目前为智能仿生体柔性皮肤领域提供支持的光纤布拉格光栅传感器研究对滑觉信号特性识别手段的不足,提出了一种通过人工学习网络对基于分布式光栅传感单元所检测的滑觉速度与滑觉载荷进行预测的方法。设计了由四支光栅构成的传感阵列,采用封装技术制成柔性传感器,并搭建实验平台对滑觉信号进行采集。给出了滑觉过程对布拉格光栅波长偏移曲线的作用原理,对经验模态分解与小波分析的去噪效果进行比较,信噪比分别达到15.99与16.15。搭建了滑觉实验系统,对采集的不同速度与载荷分度的滑觉信号的特征值设定提取标准,构建滑觉样本集,引入随机森林与神经网络两个回归模型进行训练,并对比了预测效果。实验结果指出,速度特性预测中,两种模型的R2系数分别为0.974 6和0.968 1,平均误差分别为5.22%和4.31%;载荷特性预测中,两种模型的R2系数分别为0.998 2和0.983 5,平均误差分别为1.12%和3.02%。该研究方法基本实现了对滑觉样本两种特征的准确识别,在柔性仿生皮肤传感领域对滑觉信号的研究具有一定价值。
- 单位