摘要

针对在强噪声干扰下滚动轴承故障诊断准确率较低这一问题,提出一种基于参数优化变分模态分解(VMD)和一维卷积神经网络(1D-CNN)的滚动轴承故障诊断方法。首先,使用哈里斯鹰算法对VMD算法中的相关参数进行优化,并根据所得的最佳参数对原始轴承振动信号进行VMD分解;其次,依据加权稀疏峭度最大原则优选模态分量,并将最佳分量输入到改进的1D-CNN模型进行故障诊断。实验结果表明,该方法具有较强的抗噪性能,在0 dB的信噪比情况下仍能保持94.83%的故障诊断准确率。

全文