融合改进的内容与协同过滤的博客推荐方法

作者:****; 李苋兰
来源:湖南科技大学学报(自然科学版), 2021, 36(03): 104-112.
DOI:10.13582/j.cnki.1672-9102.2021.03.015

摘要

在中文博客系统中,受限于用户特征信息的稀少,使用协同过滤算法的准确率往往不高,而基于内容推荐算法,又会影响推荐结果的多样性.因此,文章提出了一种融合改进的内容推荐与协同过滤相结合的推荐方法.首先,采用协同过滤算法发现用户的潜在兴趣并通过谱聚类改进协同过滤的相似度计算,提高处理效率;其次,基于改进的内容的推荐算法构建用户的既有兴趣模型,计算潜在推荐内容与既有兴趣模型的匹配度;最后,通过逻辑回归算法融合协同过滤与内容推荐的结果.实验结果显示,文章所提出的推荐方法相对于单一的协同过滤和内容推荐可以显著提高推荐的结果的准确率和召回率,具备良好的推荐效果.

全文