摘要
针对灰狼算法易陷入局部最优和后期寻优能力不足等缺点,提出改进非线性控制因子以提高算法收敛精度及稳定性。采用美国国家可再生能源实验室(National Renewable Energy Laboratory, NREL)"Gearbox Reliability Collaborative"项目测试采集的风力机齿轮箱振动信号为分析对象,经集合经验模态分解后,计算各本征模态函数分量的模糊熵并构建高维特征向量,后利用等距映射进行降维。利用改进灰狼算法优化支持向量机,对降维后齿轮箱故障特征集进行诊断。结果表明:改进灰狼优化算法相较于灰狼算法、粒子群算法和遗传算法可有效避免陷入局部最优并提高支持向量机诊断精度及稳定度,在不同测试样本下其准确率均最高,平均准确率达93.17%。
- 单位