摘要
针对当前传统农作物病害语义分割方法精度不高、鲁棒性差等问题,本文提出了基于注意力机制的改进UNet草莓病害语义分割模型.首先,在编码器中加入CNN-Transformer混合结构,增强全局信息与局部细节信息的特征提取能力.其次,在解码器中将dual up-sample模块替换传统上采样,提高特征提取能力与分割精度.再使用hard-swish激活函数代替ReLU激活函数,更加平滑的曲线有助于提高泛化性和非线性特征提取能力,防止梯度消失.最后,通过使用结合交叉熵Dice损失函数,加强模型对分割结果的约束,进一步提升分割精度.实验采用了由7种草莓病害2 500张图像组成的数据集,在复杂背景下对草莓病害进行分割,语义分割像素精度达到92.56%,平均交并比达到84.97%.实验结果表明,本文的改进UNet在草莓病害语义分割方面,能实现更好的分割效果,优于大多数分割模型.
- 单位