摘要
针对城市物流无人机起降点布局规划问题,考虑不同级别的物流无人机起降点,构建以总经济成本最小和客户满意度最高为目标,以禁飞区、无人机性能、容需匹配等为约束的整数规划模型。设计人类学习优化算法(HLO),引入随机学习算子、个体学习算子和社会学习算子。在此基础上,基于真实地理信息数据和物流数据设计仿真实验,验证模型与算法有效性。实验结果表明,所建模型可以实现起降点的合理布局规划,适用于大规模资源配置,具备有效性;人类学习优化算法较遗传算法求解精度与收敛速度更优,表现出较佳性能。参数分析表明,基于该仿真环境的最优经济成本权重和客户满意度权重设置为0.4和0.6,最佳算法学习概率参数组合为5/n和(0.8+2/n)。据此可对城市物流无人机起降点布局规划提供决策依据。
- 单位