高斯Copula的多光谱遥感影像分割

作者:赵泉华*; 赵静; 张洪云; 李玉
来源:模式识别与人工智能, 2019, 32(07): 633-641.
DOI:10.16451/j.cnki.issn1003-6059.201907007

摘要

为了充分利用多光谱影像波段间的相关性,提出高斯Copula的多光谱遥感影像分割方法.首先,建立基于马尔可夫随机场的标号场模型,使用Potts模型刻画该标号场.然后,建立表征像素光谱测度的特征场,利用高斯Copula建立像素光谱测度的多变量统计模型以刻画该特征场.结合标号场、特征场模型及各模型参数的先验概率,利用贝叶斯定理建立多光谱影像分割的后验概率模型.最后,设计适用于模拟后验概率模型的M-H算法,在最大后验概率策略下获取最优分割结果.对模拟和真实多光谱影像分割结果表明,文中方法描述波段间相关性的能力较强,准确性较高.

全文