基于轻量级MIE_Net的田间农作物病害识别

作者:温钊发; 蒲智*; 程曦; 赵昀杰; 张泽宇
来源:江苏农业科学, 2023, 51(10): 176-184.
DOI:10.15889/j.issn.1002-1302.2023.10.025

摘要

为实现农作物病害的快速精准识别,降低病害对农业安全生产的影响,本研究针对现有病害识别模型参数量大、鲁棒性低、泛化性弱等问题提出了轻量级MIE_Net农作物病害识别网络。该网络以MobileNetV2为基础网络结构,首先使用多尺度特征提取模块替换原网络的初始卷积层,提高网络对不同面积病斑的特征提取能力,增加网络中的特征复杂度;其次在主模块中添加ECA注意力机制,提高网络对叶片病害区域的关注程度,降低复杂背景对小病斑特征提取过程的影响;最后使用Swish激活函数增加网络的表达能力,使网络性能达到最优。结果表明,多尺度特征提取模块提高了模型对不同病斑大小的识别准确率,ECA注意力模块提高了网络对小病斑的识别准确率,最终网络模型对复杂环境中2种作物11种病害类别的最低识别精确率达到91.2%,总体病害识别准确率达到95.79%,比原网络提高1.84百分点,参数量为2.24 M,权重文件大小为8.78 MB。MIE_Net网络在保证模型轻量化的同时提高了模型的准确性、泛化性以及鲁棒性,整体性能优于其他现有网络模型,为以后的轻量级作物病害识别方法提供了参考。