摘要

针对肌电交互系统中因电极断开、损坏及数据传输中断等故障造成的数据错误/丢失问题,提出一种基于高斯混合模型的肌电信号容错分类方法,通过对肌电信号特征样本中错误/丢失数据边缘化或条件均值归错实现非完整数据样本分类.应用所提出的方法识别5种手部动作,实验结果表明,该方法的动作识别精度要高于传统的零归错与均值归错方法.最后,融合容错分类机制开发了肌电假手平台,在线实验验证了提出的方法可以有效提高肌电交互系统的鲁棒性.