摘要

针对局部二值模式(local binary pattern, LBP)容易受到随机噪声和边缘点对图像的影响,以及局部二值模式描述图像纹理特征时阈值不能自动选取导致鲁棒性差的问题,提出一种基于加权自适应多重均匀局部二值模式(weighted adaptive multiple uniform local binary pattern, WA-MULBP)与二维主成分分析(two dimensional principal component analysis, 2DPCA)相结合的掌纹识别方法。首先采用直方图均衡化(histogram equalization, HE)对掌纹感兴趣区域(region of interest, ROI)图像进行光照预处理,减少成像时的光照变化对最后掌纹识别成功率产生的影响;然后将预处理后的图像分成大小均匀的子块并利用自适应多重均匀局部二值模式(adaptive multiple uniform local binary pattern, A-MULBP)算法获取各个子块的纹理特征直方图和权值;最后,将各个子块的纹理特征直方图和权值相乘串联得到最终的纹理特征直方图,经2DPCA维数约简后采用欧氏距离判别法进行掌纹识别。在香港理工大学PolyU图库、同济和IIT-D非接触式图库、自建非接触图库以及它们的噪声图库上进行对比实验,可获得最低等误率分别为1.879 0%、2.019 2%、2.184 9%、2.663 2%、4.380 3%、4.730 1%、5.005 0%和5.223 7%,且识别时间都在1 s以内。相比其他算法,在保证实时性的情况下,有效提高了识别精度和鲁棒性。

全文