摘要
精确的光伏发电预测对提高电力系统稳定性、保证电能质量、优化电网运行具有重大意义。为了解决现存光伏预测算法精度较低、性能较差的问题,同时为了综合利用多层感知器(MLP)解决非线性问题的能力以及深度信念网络(DBN)有效处理大量复杂数据的优势,构建了一种融合MLP和DBN的光伏预测算法(MLP-DBN),其基本思想是先利用MLP模型进行初步预测,再将观测值与预测值的残差输入DBN预测模型进行预测,最后用残差预测值对MLP模型的预测值进行修正。利用光伏发电实测数据仿真,探究了不同学习率下模型的预测性能,并对模型的各参数进行了寻找优化设置。使用均方根误差、平均绝对误差以及决定系数等性能指标评估结果表明...
- 单位