摘要

针对林隙大小的时变性、不确定性,及林隙大小与其影响因素存在复杂的非线性关系,采用改进的Elman神经网络对林隙大小建立动态模型。在分析改进的Elman神经网络结构特点、改进算法及训练过程的基础上,选择庞泉沟自然保护区内华北落叶松林、油松林、云杉林为对象,建立了基于改进的Elman神经网络林隙大小动态预测模型。结果表明:所建模型对林隙大小的拟合仿真具有很高的精度,预测效果比较稳定。最后运用此模型预测了3种林分对应调查林隙被填充者完全取代的年限。