摘要
城市绿化在改善空气、水和土壤质量,吸收和减少二氧化碳及各种污染物,缓解城市热岛和减少雨水径流等方面发挥着重要作用。及时准确地获取树种信息是城市规划与绿化管理的先决条件,对进一步改善城市生态环境也具有重要意义。基于遥感技术,使用高空间分辨率的WorldView-2卫星影像,采用光谱、纹理、指数以及几何等多种特征相结合的面向对象方法,并通过随机森林进行特征选择,对福州大学旗山校区北部的榕树、杧果、香樟、重阳木、羊蹄甲、垂叶榕以及木棉7种主要绿化乔木进行树种分类。实地验证结果表明:通过特征选择可以减少或规避数据冗余以及休斯效应的产生,该方法可以提高现有同类型树种分类的精度,当淘汰全部特征的20%,利用34个特征(包括15个光谱特征、6个纹理特征、8个指数特征和5个几何特征)进行分类时,总精度最高,可达74.95%,Kappa系数为0.67。其中,光谱平均值的特征重要性最高,而各波段的标准差的重要性较低。WorldView-2卫星影像的4个新增波段,特别是黄光和红边波段及其构建的指数特征重要性较高,也说明这些波段在植被遥感,特别是树种分类中极具应用前景。
- 单位