摘要
目的 探索基于条件期望的函数型主成分分析方法(principal analysis by conditional expectation, PACE)在稀疏且不规则的纵向数据中的预测效果,评价其揭示总体变化趋势、个体特异的变异方式以及预测个体纵向变化轨迹的能力。方法 采用R软件模拟生成样本量为200的三种不同稀疏情形的纵向数据集,通过数值模拟定量地评价PACE方法的降维及预测效果。结果 根据累计方差贡献率达到85%,三种不同稀疏情形的纵向数据集最终选取的主成分个数分别为4、4、3,PACE方法在不同稀疏情形下预测结果均具有较小的均方误差(MSE),分别为0.1410、0.0670、0.0161,而且观测点个数越多预测效果越好。结论 PACE方法可以实现在随访间隔不规则且数据稀疏的情况下,捕获纵向数据随时间变化的总体趋势,揭示个体特异的变异方式,预测个体的纵向轨迹。
- 单位