针对风电功率序列非线性、非平稳性特点,提出一种变分模态分解(VMD)-加权排列熵(WPE)和麻雀算法(SSA)优化极限学习机(ELM)的混合风电功率预测模型。首先,采用VMD技术将原始序列分解为多个固有模态分量,再采用WPE技术将各分量重组成若干个复杂度差异较大的子序列。然后,利用启发式SSA算法对ELM的参数进行优化,建立风电功率预测优化模型。最后,采用西北某风电场实际数据对所提模型进行验证。结果表明,与其他模型相比,所提模型提高了预测性能。