摘要

基于2008—2019年我国台风县(区)灾情的直接经济损失数据,根据经济损失率将台风灾害经济损失风险分为五类,考虑台风灾害的致灾因子和孕灾环境因子共选取10个解释变量,采用五种经典的机器学习算法,包括支持向量机(Support Vector Machine,SVM)、随机森林(Random Forest,RF)、AdaBoost、XGBoost(Extreme Gradient Boosting Machine)和LightGBM(Light Gradient Boosting Machine),分别构建台风灾害经济损失风险评估模型,选出准确率最高的模型,应用于经典台风过程并进行检验评估。结果表明:基于RF算法的台风灾害经济损失风险模型的准确率最高;利用RF、XGBoost、LightGBM、AdaBoost和SVM算法构建模型的准确率依次为0.69、0.63、0.62、0.45和0.41。选择RF算法构建的台风灾害经济损失风险模型的解释变量表明,致灾因子是最主要的解释变量,其中,降雨导致损失的重要性超过风速。该模型在训练集和测试集上对风险分类的TS评分为0.55和0.51,但对每种风险类别的辨别能力存在差异,对于最低风险和最高风险的分类效果较好,对于较高风险和中等风险的分类能力不足。利用该模型对2017年第13号台风“天鸽”的经济损失进行检验评估,评估结果与实际台风灾害经济损失的风险等级较一致,各风险等级的准确率均达到0.7以上,TS评分在0.58以上,空报率和漏报率分别在0.31和0.25以下。