针对传统BP神经网络学习过程中学习率选取过大导致振荡的问题,提出一种新的BP神经网络PID(比例-积分-微分)参数自适应整定算法.采用BP神经网络对PID参数进行自适应调节和优化,并利用动量因子优化学习率和增加动量项抑制BP神经网络训练中出现的振荡现象,以加快收敛速度.实验结果表明,该算法有效缓解了振荡现象,加快了算法的收敛速度.