摘要

针对风电场采集到的历史风速数据中存在异常值的问题,为保证风速数据的准确性和有效性,提出了一种运用差分自回归滑动平均(auto regressive integrated moving average,ARIMA)、小波分解(wavelet decomposition,WD)和隐马尔科夫(hidden Markov model,HMM)组合算法对异常风速数据进行挖掘的方法.采用ARIMA模型挖掘异常风速数据的潜在特征,得到反映风速值异常情况的残差序列;为进一步提高检测精度和降低系统误差的干扰,采用小波分解方法捕获残差序列中的粗大误差特征;借助HMM算法的双重随机过程检测异常风速值并剔除,将剔除异常值后的数据运用粒子群优化最小二乘支持向量机方法进行重构,保证风速序列的完整性.实际算例结果表明了所提方法的有效性和可行性.