摘要
利用机器学习方法建立以区县为基本研究单元的浙江省台风灾害风险评估模型,并进一步结合气象预报与实测数据形成覆盖全省、时空连续的台风过程动态风险预报,为科学应急减灾提供决策支持。首先,本研究以浙江省各区县为研究对象,考虑危险性、孕灾环境、暴露性和脆弱性等风险要素选择台风灾害风险评估模型的预测变量;其次,基于10个重大历史灾害的灾损数据(直接经济损失)划分风险等级作为输出变量;最后,采用机器学习模型XGBoost建立台风灾害风险评估模型。同时,以利奇马为例,进一步探索该模型的实战应用潜力,即以气象预报和实测数据为模型驱动,实现浙江省全域各区县台风灾害风险的实时更新预报。
-
单位浙江大学; 建筑工程学院