摘要
传统的K-Shell分解法具有时间复杂度低的特点,但其划分结果普遍粗粒化,难以满足精细化节点重要性划分的实际需求。基于K-Shell分解法,提出一种改进的重要节点挖掘算法。在充分利用节点的网络位置信息的基础上,考虑节点的度数和节点被删除时所处的迭代层数,提出改进的K-Shell方法;在用改进的K-Shell对节点排名并提取核心网络后,结合节点的PageRank值,定量分析网络核心层的节点,形成多层级的节点重要性划分。在三种真实网络数据集中的实验验证表明,该方法能显著提高K-Shell分解法的分辨率,并且时间复杂度低,适用于大规模网络的应用。
-
单位中国人民解放军战略支援部队信息工程大学