摘要

针对车间的混合流水线调度问题(HFSP)存在智能算法寻优过程中节能目标即适应值评估代价高的问题,首先,通过分析车间节能模型建模的编码方式,提出一种基于矩阵编码机制的特征向量提取方法,引入核函数有利于极限学习机(ELM)求解节能目标。其次,对需要构建代理模型的改进多目标多元宇宙优化算法(IMOMVO)进行计算复杂度分析,建立了基于ELM的代理模型,设计数据驱动优化的车间节能目标算法框架。最后,基于均匀分布变量的拉丁超立方抽样,形成初始化样本,与BP算法进行预测性能验证和计算时间对比两个实验。实验结果显示,ELM算法的拟合优度为0.973 81,预测性能指标均优于BP算法。单个适应值平均计算时间为5.4×10-4s,仅为真实求解的18.5%。说明ELM在车间节能目标预测问题具有良好的效果。

全文