摘要
针对文本图像编辑任务中编辑前后文字风格样式不一致和生成的新文本可读性不足的问题,提出一种基于字体字符属性引导的文本图像编辑方法。首先,通过字体属性分类器结合字体分类、感知和纹理损失引导文本前景风格样式的生成方向,提升编辑前后的文字风格样式一致性;其次,通过字符属性分类器结合字符分类损失引导文字字形的准确生成,减小文本伪影与生成误差,并提升生成的新文本的可读性;最后,通过端到端微调的训练策略为整个分阶段编辑模型精炼生成结果。对比实验中,所提方法的峰值信噪比(PSNR)、结构相似度(SSIM)分别达到了25.48 dB、0.842,相较于SRNet(Style Retention Network)和SwapText分别提高了2.57 dB、0.055和2.11 dB、0.046;均方误差(MSE)为0.004 3,相较于SRNet和SwapText分别降低了0.003 1和0.002 4。实验结果表明,所提方法能有效提升文本图像编辑的生成效果。
-
单位上海大学; 通信与信息工程学院