摘要

随着在线学习平台的普及,产生了大量学习行为数据,如何利用大数据挖掘技术分析在线学习行为,解决学习者经常面临的"资源过载"和"学习迷航"问题,更好地实现教学决策、学习过程优化和个性化学习方法推荐等,已经成为研究重点.文章基于苏州线上教育中心的学习行为数据,研究了常用的推荐系统模型,结合该平台的数据特点,提出了一种基于知识图谱的协同过滤推荐算法,利用该算法,平台推荐的资源准确率超过了90%,有效解决了学生"学习迷航"的问题.