针对传统RBF神经网络存在的高维数据学习训练问题,采用K-means聚类算法设计RBF神经网络数据中心,建立基于聚类RBF神经网络的机载传感器精度评估模型,运用改进的RBF神经网络对机载传感器系统进行精度评估研究。仿真研究结果表明,与传统RBF神经网络评估算法相比,该算法有效减少评估时间,提高预测精度,表明算法是合理和有效的。