摘要

为满足汽车高级驾驶辅助系统对车道线检测准确性和时效性的要求,采用改进的ResNet50网络作为基础模型提取局部车道线特征,利用扩张卷积能指数级扩大感受野的特点,设计了扩张卷积金字塔模块,用以完整提取不同尺度的车道线特征,提出"锚点栅格"的思想,将输出划分为一组栅格,对每个栅格进行分类和回归分析,经过非极大值抑制等后处理,最终输出车道线标记点集.结果表明:在CULane多场景数据集里对模型进行测试,在交并比阈值取为0.3的评估条件下其综合评估指标F-measure达到78.6%,检测速率达到40帧/s,在评估指标相近的情况下具有远高于空间卷积神经网络(spatial convolutional neural networks,SCNN)模型的检测速率,并在眩光、弯道等困难场景中的检测效果优于SCNN.