摘要
低维流形及其二阶扩展是近年来提出的新型视觉先验约束,已被应用于灰度图像修复并取得优秀的效果.然而,现存正则项从图像的本质空间维度以及结构平滑性出发,恢复出符合现实感知的视觉目标,却并未深入探究损失函数的能量集中特性.针对该问题,提出了一种基于重加权二阶正则项的灰度图像修复算法.具体而言,以二阶低维重构项为基础,首先将其扩展为基于分解系数的加权形式,并约束新的列权值至原有行权值上,突出能量集中特性.所提方法从图像块中提取局部基和非局部基构成一个紧致的框架,兼顾利用图像的局部-非局部特征.最终目标模型可分解为若干子线性方程进行优化求解.在多个经典图像上进行了大量的数值实验,修复结果表明,就视觉和数值两方面而言,提出的基于重加权二阶正则项修复算法均优于同类算法.
- 单位