摘要

为了准确预测多维影响因素条件下天然气需求量的变化,引入自适应惯性权重因子改进粒子群优化算法(Particle Swarm Optimization,PSO),将构建的自适应粒子群优化算法(Adaptive Particle Swarm Optimization,APSO)与改进Tent映射相结合,对长短期记忆(Long Short-Time Memory,LSTM)神经网络模型中的隐含层节点数、学习轮数、初始学习速率进行超参寻优,改变传统LSTM模型凭经验设定超参数的不足。基于1999—2020年的10项强相关性影响因素细分数据进行算例验证,并对2021—2030年中国的天然气需求量进行预测。结果表明:改进Tent-APSOLSTM模型组合参数寻优效果最佳,可以更好地适用于中国天然气中短期需求量预测工作。(图5,表6,参34)

  • 单位
    武汉理工大学; 长江航道规划设计研究院; 湖北交通职业技术学院