摘要
为改善振动信号修复效果,引入贝叶斯压缩感知(BCS)理论,并提出一种基于经验模态分解(EMD)的贝叶斯压缩感知修复方法,以解决连续缺失信号修复问题。针对随机缺失信号,根据压缩感知修复原理,利用贝叶斯压缩感知算法进行修复;针对连续缺失信号,先对其进行经验模态分解,对分解得到的所有基本模式分量利用多任务贝叶斯压缩感知算法进行修复,最终将所有修复的基本模式分量累加得到整体信号。利用西储大学公开轴承数据进行修复实验,发现所提方法在时频域指标、误差、信噪比、峰值信噪比等方面均优于正交匹配追踪和正则化正交匹配追踪算法。从修复效果角度验证,发现该方法成功还原了外圈故障信号基本模式分量中的故障特征频率,达到了修复的目的。
-
单位中国人民解放军陆军工程大学