针对传统的模糊核聚类算法(FKCM)需给出聚类个数,且对初始值敏感、易陷入局部最优的缺点,本文提出了一种基于高斯核化有效性指标的自适应优选聚类数的模糊核聚类算法(GKVI-AOCN-FKCM).利用基于密度和距离的方法选取初始聚类中心,克服了对初始值的敏感,提高了聚类效率.然后用高斯核函数核化后的有效性指标评价聚类效果并自动确定最佳分类数,从而无监督地实现对数据集的模糊划分.对Iris数据集的