摘要

社区发现是复杂网络研究领域的一个热点问题,目前已经有许多局部社区发现算法被提出用于快速发现高质量的社区,不过它们往往存在种子节点依赖或是稳定性问题。因此,部分算法试图根据核心节点被邻居高度包围且相互之间距离较远的拓扑特性来精确地锁定种子节点以避免上述问题,但距离的计算使得其时间复杂度较高。文中提出了一种基于核心节点影响力的社区发现方法 CDIC,该方法首先根据核心节点的拓扑特性和网络邻接信息寻找所有可能是核心的节点,之后利用真正核心节点影响力较高的性质和标签传播的思想来扩张社区,并淘汰被误选为核心的节点以避免种子依赖问题,同时不涉及最短距离的计算也保证了较低的时间复杂度,最后依据相似度理论提出了一种社区对节点的吸引力来合并特异节点,以保证算法结果的稳定性。将CDIC与6种经典算法以及2种近年来提出的算法在64个人工网络和4个真实网络上进行仿真实验,并对其社区划分结果对应的标准化互信息值和纯度进行了比较,结果表明了CDIC的有效性。