针对标准灰狼优化算法(GWO)只适合求解连续优化问题,无法直接求解离散域上的资源分配问题,提出一种基于马太效应的离散灰狼优化算法(DGWO)来求解资源分配问题.首先,根据数学映射思想给出一种将连续空间转化为离散空间、实数变换为整数的编码转换方法;然后,对其中的不可行解采用基于马太效应的修复与优化方法处理;最后,将DGWO计算结果与遗传算法结果进行对比发现不论是收敛速度,还是求解质量,DGWO算法均优于遗传算法.实验结果表明了DGWO算法求解资源分配问题的可行性、正确性和优越性.