摘要
近年来,随着化石燃料消耗的急剧增加,排放到大气中的CO2日益增多,其导致的温室效应和环境污染问题日益突出,因此如何实现CO2高效转化利用成为当务之急.光催化CO2还原(PCR)技术是解决温室效应的策略之一.目前,大部分光催化剂的研究集中在提高可见光范围内的光催化活性,如果开发出能够吸收和利用近红外(NIR)光的半导体光催化剂,将可大幅提高太阳光的利用率,从而提高PCR活性.非化学计量的W18O49(WO)由于氧空位引起的局部表面等离子体共振(LSPR)效应而具有较好的NIR吸收性.此外,氧空位引起的LSPR效应可以吸收低能光子,并产生高能“热电子”以促进载流子转移,可以改善光生电荷分离.通过胺化的CdSe-二乙烯三胺(CdSe-D)和WO耦合构建S型异质结光催化剂,可以提高光生载流子的分离效率.因此,该类结构在利用太阳光将CO2转化为有机燃料的领域具有巨大的潜力.本文通过溶剂热法在CdSe-D上原位生长WO.采用X射线衍射(XRD)技术研究了不同比例的CdSe-D,WO和复合样品的物相,没有观察到杂质峰,表明没有其它杂质混入.扫描电子显微镜和透射电子显微镜表结果表明,CdSe-D上的WO是原位生长的,而不是简单的机械混合.采用XPS光谱分析了WO,CdSe-D和35%WO/CdSe-D中的Cd,Se,O和W元素,结果表明,电子是从CdSe-D移动到WO.根据UV-vis DRS结果,WO在450-1800 nm有吸收峰,这可归因于WO是一种非化学计量的氧化钨,表面上有大量的氧空位,从而触发了由电子集体振荡引起的LSPR效应.CdSe-D和WO带隙分别为1.97和2.68 eV.由Mott-Schottky曲线对CdSe-D和WO的导带位置进行估计,可以得出CdSe-D和WO的导带位置.利用PL光谱、瞬态光电流响应和阻抗研究了光催化剂的界面电荷载流子转移和分离效率,表明构建S型异质结加快电子的传输进一步提高了电荷分离和转移效率.光催化CO2还原测试可以发现,35%WO/CdSe-D的产率为29.72μmol h-1 g-1,表现出最优异的CO2还原性能,且经过三次循环实验依然保持良好的光催化性能.综上,本文成功构建了胺化S型WO/CdSe-D异质结光催化剂,光吸收范围增大,光吸收能力增强,氧化还原能力提高,对具有富氧空位的非化学计量氧化物的LSPR效应提供了一种新的见解.
- 单位