摘要

针对二支决策TAN分类器在处理不确定数据时有较高的错误率,提出一种新的三支扩展TAN贝叶斯分类器(3WDTAN).首先通过构建TAN贝叶斯分类模型,采用先验概率和类条件概率估计三支决策中的条件概率;其次构建3WD-TAN分类器,制定3WD-TAN分类器中正域,负域和边界域的三支分类规则,结合边界域处理不确定性数据的优势,在一定程度上纠正了传统TAN贝叶斯分类器产生的分类错误;最后通过在5个UCI数据集上选取NB、TAN、SETAN算法进行对比实验,表明3WD-TAN具有较高的准确率和召回率,且适用于不同规模数据集的分类问题.