摘要

近年来图神经网络与深度强化学习的发展为组合优化问题的求解提供了新的方法。当前此类方法大多未考虑到算法参数学习问题,为解决该问题,基于图注意力网络设计了一种智能优化模型。该模型对大量问题数据进行学习,自动构建邻域搜索算子与序列破坏终止符,并使用强化学习训练模型参数。在标准算例集上测试模型并进行三组不同实验。实验结果表明,该模型学习出的邻域搜索算子具备较强的寻优能力和收敛性,同时显著降低了训练占用显存。该模型能够在较短时间内求解包含数百节点的CVRP问题,并具有一定的扩展潜力。

全文