摘要
通过可学习的预测算法获取卷积神经网络(CNN)在硬件上的推理耗时越来越受到研究者的关注。现有耗时预测算法主要面临2个问题:卷积神经网络设计空间采样复杂度高,数据采集成本高;无法准确预测硬件编译器的算子融合技术对推理耗时的影响。为了解决上述问题,提出了一种基于图卷积网络(GCN)的耗时预测算法,将整体网络耗时看作多节点耗时补偿的累加,并利用图卷积对结构算子融合产生的耗时影响进行建模。同时,提出一种新型差分训练方案,减少采样空间规模,提高算法的泛化能力。在HISI3559硬件平台上对MB-C连续空间采样模型的耗时预测实验表明:所提算法可将耗时估计的平均相对误差从传统算法的302%降低到5.3%。另外,通过将传统耗时预测算法替换成所提算法进行耗时评估,可以使网络结构搜索算法搜索到耗时更加接近目标的高精度网络。
-
单位杭州海康威视系统技术有限公司; 杭州海康威视数字技术股份有限公司