摘要
针对文本多分类算法中,由于不平衡数据集产生的小样本分类数据准确率低问题,提出基于轮廓系数动态K-means聚类的文本多分类混合式均分聚类采样算法。在不平衡数据集中针对小样本数据集利用聚类簇进行等比例过采样,针对大样本数据集利用聚类簇进行欠采样。基于微博灾害数据集,设计文本卷积神经网络,对该算法进行实验验证与分析,实验结果表明,该算法能够有效提升文本不平衡数据集的准确率和F1值,较好解决了不平衡文本数据集分类问题。
-
单位华北科技学院