摘要
木线条是一种用途广泛的建筑材料,主要用于装饰、装修和家具制造等行业。涂泥木线条具有美观、强度高、耐潮湿等优点,深受用户的青睐。在生产过程中,为了提高产品质量,需要对涂泥木线条的表面缺陷进行检测,基于数字图像处理技术的缺陷检测方法已成为主要技术手段。在图像中,面积较大的缺陷相对容易检测,但小的点状缺陷由于包含像素少、缺乏纹理特征等特点,检测非常困难。使用传统的、基于滤波的方法检测小缺陷,主要利用了小缺陷的高频特性,但高频图像噪声会造成误检,导致检测效果并不理想。本研究提出了基于相关向量回归结合后处理的方法对小缺陷进行检测,相关向量回归与支持向量回归相比,具有超参数少、表达更稀疏、核函数不需要满足梅西定理等优点。该方法通过以下步骤实现小缺陷检测:首先利用相关向量回归算法对图像进行处理,将回归值作为像素灰度值构建回归图像,然后求原始图像与回归图像的差图像,求取差图像的核相关系数后,再经过取反、二值化和局部平均等后处理,最终得到信杂比较大的检测图像。通过检测指标的比较,与基于Top-hat滤波的检测算法相比,本研究提出的方法具有更好的检测效果。
-
单位中国林业科学研究院木材工业研究所; 电子工程学院