摘要
针对路侧交通监控场景和智能交通管控需要,提出轻量型的车辆检测算法GS-YOLO,解决现有模型检测速度慢、占用内存多的问题。GS-YOLO借鉴GhostNet思想将传统卷积分为两步,利用轻量操作增强特征,降低模型的计算量。在主干特征提取网络中引入注意力机制,对重要信息进行选择,提高模块的检测能力。另外参考SqueezeNet结构,使用Fire Module和深度可分离卷积减少模型参数,模型大小从244 MB降低到34 MB,内存占用降低了86%。使用Roofline模型对实验数据和模型实际性能进行分析,结果表明GS-YOLO的精确度(AP)达到85.55%,相比YOLOv4提升了约0.45%。由于受计算平台带宽影响,GS-YOLO在GPU上检测速度提升7.3%,但在CPU上检测速度提高了83%,更适用于算力资源不足的小型设备。
- 单位