摘要
目标检测问题是计算机视觉中的热门问题,如何提高目标检测定位精度是检测过程中面临的一个难题。在SSD算法的基础上,通过结合选择性搜索算法,提出了一种提高检测定位精度的方法。该算法首先通过SSD算法框架对图像进行目标初始检测,获得目标粗略位置和目标类别,然后采用一种改进的选择性搜索算法对目标所在区域进行选择性搜索,生成目标边界候选框,最后采用文中提出的边界判断方法得到目标精确位置,完成由粗到精(Coarse-to-Fine)的目标定位检测。文中算法对PASCAL VOC2012数据集中的22 531张图像进行了测试,实验结果显示文中算法检测目标中心位置误差7.6,平均覆盖率90.8%,相比于其他算法,中心位置误差更低,覆盖率更高,能提高目标检测定位精度20%~30%。
-
单位西安邮电大学; 空军工程大学信息与导航学院