摘要
针对无人飞行器在环境特征突变情况下数据融合的可靠性大幅下降问题,提出了神经网络预测补偿的组合导航算法。首先利用扩展卡尔曼滤波和粒子滤波对激光、光流等传感器得到的数据进行融合,然后采用径向基函数(RBF)神经网络对粒子滤波前后的误差进行预测。当激光数据可靠时,RBF神经网络进行训练学习模式,当激光数据中断或者不可靠时,利用训练后的模型对系统进行误差补偿。利用无人飞行器在室内环境下进行定点和轨迹实验,结果表明补偿后的位置导航信息能够明显降低激光数据不可靠时带来的定位误差。
-
单位南京理工大学; 自动化学院; 上海机电工程研究所