摘要
在数据集稀疏的情况下传统的Slope One算法推荐效果差、精确度低,并且该算法对所有用户一视同仁,没有考虑用户间相似性和差异性的情况;同时,随着数据量越来越大,实时性也逐渐变差。针对以上问题,进行加权Slope One算法优化的研究。首先,利用模糊聚类技术将不同类型用户进行分类,减少最近邻搜索范围,降低计算复杂度;然后,对加权Slope One计算公式进行改进,在计算中引入皮尔逊相关系数加以限定;最后,在每个类簇中利用改进的加权Slope One算法进行用户评分预测,进而产生推荐集。实验表明,本文算法有效提高了推荐精确度,增强了推荐实时性。
- 单位