摘要

本文以中国电信某省一个本地网3个月的真实公众客户基本信息、语音数据短信业务信息等数据,通过数据预处理、特征工程、模型训练、预测分析等成熟方法论,结合组合特征、word2vec生成embedding特征向量、BaggingClassifier/XGBoost/LightGBM模型堆叠融合算法等手段,重点解决了用户流失告警模型中特征不突出、单模型训练预测效果不明显等问题。经过本地网生产应用评估,本文提出的基于embedding和模型堆叠融合算法的用户流失预测模型算法,精准定位潜在的流失公众客户范围,并通过市场部门"对症下药",匹配合适的挽留政策,明显提升了存量客户经营效率,为全国各省各本地网存量用户流失建模提供了较好的借鉴模板。