基于PC-YOLOv7算法钢材表面缺陷检测

作者:赵春华; 罗顺; 谭金铃; 李谦; 林彰稳; 范彦坤; 陈熙
来源:国外电子测量技术, 2023, 42(09): 137-145.
DOI:10.19652/j.cnki.femt.2304998

摘要

针对钢材表面缺陷检测中存在检测精度低、模型尺寸大等问题,提出一种基于YOLOv7-tiny网络改进的算法模型PC-YOLOv7。首先将PC-ELAN结构替换主干网络中部分ELAN结构,降低模型参数量和模型尺寸;其次在特征融合网络(Neck)部分采用双向特征金字塔网络(bidirectional feature pyramid network, BiFPN)增强图像高层语义信息和低层特征信息融合性能,在输出端引入SPD-Conv提高模型对低分辨率物体的检测能力;最后,提出SimCS-CA模块并引入特征融合网络增强模型的特征表示性能。实验结果表明,PC-YOLOv7算法在NEU-DET数据集上平均精度均值(mAP)达到了78.5%,相比原始YOLOv7-tiny算法在模型尺寸降低情况下准确率和mAP分别提升了10.6%和4.2%,验证了改进算法的有效性。

全文