摘要
完整的交通路网数据是实现智能交通系统的前提,故本文提出一种基于图自编码-生成对抗网络的方法对路网中缺失数据进行修复。首先,通过降噪图变分自编码器提取路网缺失数据的时空特征,使其能最大程度捕获原始路网信息;其次,基于该时空特征利用生成对抗网络生成路网数据,加入重建损失并优化生成对抗网络的目标函数,实现对缺失数据的有效插补;最后,采用西雅图(Seattle)和加州(PEMS04)路网速度数据集,针对不同缺失类型和缺失率下的数据修复进行对比实验。当随机缺失率在10%~70%时,Seattle数据集的MAE指标在2.38~3.25之间,PEMS04数据集的MAE指标在1.46~2.38之间;当聚集缺失率在10%~70%时,Seattle数据集的MAE指标在2.51~2.82之间,PEMS04数据集的MAE指标在1.52~1.54之间。对比结果表明,本文提出的路网数据修复方法均优于BP、DSAE、BGCP等模型。
-
单位浙江工业大学; 交通运输部科学研究院