摘要

为了提高大规模网络数据入侵类型实时检测的准确率,采用线性判别分析(LDA)对网络样本特征进行降维处理,降低孪生支持向量机(TWSVM)的运算复杂度,增强TWSVM的网络入侵检测适用度;首先,采用LDA基于类内和类间散度计算获得网络入侵检测样本的降维特征变量;然后,建立LDA-TWSVM网络入侵检测算法,分别求解TWSVM一次规划和二次规划的核心参数;最后,输入降维特征变量,通过TWSVM输出获得网络入侵检测结果。结果表明:LDA网络样本特征降维对网络入侵检测的正向激励效果较为显著,使得所提出的算法在网络入侵检测中具有较高的适应度;相比于几种常用入侵检测算法,所提出的算法具有更高的检出率(0.994 3)和更优的均方根误差(1.132 8)。

全文