摘要
针对三维人脸识别的高复杂度和二维人脸识别无法提供粒状线索的问题,提出一种全自动3D人脸表情识别算法,该算法主要是提供比2D人脸识别更多的线索,同时降低计算复杂度。首先通过保角映射将3D人脸转化到2D平面,保留了面部变化的线索;然后,提出了基于优化算法的差分进化(DE)算法用于提高识别效率,同时提取最优人脸特征集和分类器参数,加速鲁棒特征(SURF)池描述了所有预期的人脸特征点。在博斯普鲁斯、FRGC v2及自己搜集的人脸数据集上的实验结果表明,本算法解决了三维人脸识别的高计算复杂度和二维人脸识别的线索低问题,并在不降低识别性能的前提下大大地节约了成本,相比几种较为先进的三维人脸识别算法,该算法...
-
单位四川大学; 四川工程职业技术学院