摘要
电容式电压互感器(CVT)是应用于变电站的关键设备,能够实现长途通信、远方测量、选择性线路高频保护等功能,为提高变电站的可调控能力提供有力保障。本文基于CVT的结构形态特性与故障类型,提出一种改进的卷积神经网络(CNN)预测方法,将其应用于CVT故障在线检定。该方法在传统CNN模型中加入平均池化层,实现信号降采样并保留信号的特征信息,使用支持向量机(SVM)代替传统的softmax函数。对所提模型进行仿真实验,本文模型在187μs的检测时间内能够实现100%检测精度,检测精度与检测时间均优于传统CNN模型;同时,将某500 kV变电站CVT实测电压数据作为数据集,用于本文模型的仿真实验,仿真结果表明本文模型在实际工程案例中能迅速检出CVT早期故障并发出故障预警信息,故障诊断效果较好,对于变电站稳定运行具有重要意义。
-
单位国网四川省电力公司电力科学研究院; 四川大学; 四川轻化工大学