摘要

随着高光谱成像技术的发展,利用国产高光谱影像进行大范围土壤参数反演成为了可能,但其反演精度仍有待提高。因此,以陕西大西沟矿区为例,以GF-5高光谱卫星影像以及实测的土壤样本数据为数据源,提出了一种基于遗传算法特征选择的XGBoost土壤铜元素反演模型(GA-XGBoost)。首先,对预处理后的影像数据进行连续统去除等光谱变换,并利用蒙特卡罗交叉验证法(MCCV)剔除异常土壤样本;最后,分别建立基于相关系数与遗传算法特征选择的XGBoost重金属含量反演模型。实验结果表明,相同光谱变换条件下,与基于相关系数特征选择的XGBoost模型相比,所提GA-XGBoost模型性能均有明显改善,其中基于连续统去除变换的GA-XGBoost模型反演效果最优,均方根误差为4.85 mg·kg-1,拟合优度达0.84,相对预测误差值为2.0。利用该模型进行研究区土壤Cu含量空间分布反演结果表明,该区域开采区周边及道路两侧受到Cu的污染较严重,这一规律与实地调查结果一致。