摘要
基于anchor-free的目标预测方法相较于anchor-based方法速度更快,故设计一种基于anchor-free的孪生网络目标跟踪算法(AFSN)。通过对特征图、预测结果进行双重融合来提升跟踪效果,由深至浅对特征图进行堆叠融合,利用多层特征图进行目标预测,融合多个预测结果来稳定跟踪效果。采用anchor-free的目标预测方法,直接在像素点上进行目标类别的预测和边界框回归,避免了需设计大量锚点包围盒的问题。在GOT-10K数据集上,该算法的平均重叠率(AO)和成功率(SR0.75)相较于SiamRPN++算法提高了4.9和9.9百分点,算法处理速度可达每秒37帧。
- 单位