摘要

近年来,对伪装目标进行精准识别的军事需求不断加大,使得伪装目标分割(COS)技术应运而生。由于伪装目标与背景的融合度较高,COS比传统的目标分割难度更大。为更加精准地分割出伪装目标,构建完备的军用伪装目标数据集(MiCOD),并提出一种基于人类视觉系统的COS网络—COSNet。COSNet由特征提取模块、聚焦放大模块、多尺度特征图融合模块3部分组成。针对性设计的聚焦放大模块包含关键点聚焦模块和感受野放大模块,关键点聚焦模块通过模拟人类注意力高度集中的观察过程减少虚警率,而感受野放大模块通过仿生人类视觉感受野机制以增大观测范围、提升分割精度。损失函数方面,依据聚焦放大模块设计了更适用于伪装目标识别的关键点区域加权感知损失,以给予伪装目标更高的关注度。大量定量和定性实验结果表明:在自建数据集MiCOD上,与其他目标分割模型对比,COSNet在8个评价指标上均达到最优效果,分割精度明显提升;当模拟真实的战场环境时,COSNet平均灵敏度Senmean为0.622,平均特异度Spemean为0.670,漏检率和虚警率均低于其他算法。